Encyclopedia of Sustainable Management

Living Edition
| Editors: Samuel Idowu, René Schmidpeter, Nicholas Capaldi, Liangrong Zu, Mara Del Baldo, Rute Abreu

Carbon Emissions

  • Irmgard BuderEmail author
Living reference work entry
DOI: http://doi.org/10.1007/978-3-030-02006-4_301-1



Carbon emissions describe the emissions of carbon dioxide (CO2) by human activities such as the combustion of fossil fuels, steel and cement production, deforestation, and land-use change. The combustion of biofuels is not included in the inventories of CO2 emissions of the International Energy Agency (IEA) and the European Union (EU), since it is assumed that this process does not cause net CO2 emissions (IEA 2016; Janssen-Mahout et al. 2017).


Carbon dioxide is a natural component of air. Biological and geological activities release CO2 which is then absorbed in closed and balanced cycles – the biological and the geological carbon cycle (Sundquist 1985). Additional CO2 is released by human activities of which the combustion of fossil fuels is the most important (IEA 2016). These emissions are not completely absorbed in carbon sinks as, for example, forests, but either remain in the air or are...

This is a preview of subscription content, log in to check access.


  1. Aminu, M. D., Nabavi, S. A., Rochelle, C. A., & Manovic, V. (2017). A review of developments of carbon dioxide storage. Applied Energy, 208, 1389–1419.  .
  2. Andrew, R. M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10, 195–217.  .
  3. Arneth, A., Sitch, S., Pongratz, J., Stocker, B., Ciais, P., Poulter, B., Bayer, A., Bondeau, A., Calle, L., Chini, L., Gasser, T., Fader, M., Friedlingstein, P., Kato, E., Li, W., Lindeskog, M., Nabel, J. E. M. S., Pugh, T. A. M., Robertson, E., Viovy, N., Yue, C., & Zaehle, S. (2017). Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience, 10, 79–86. . Accessed 14 Aug 2014.
  4. Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., Frankenberg, C., Hartmann, J.-M., Tran, H., Kuze, A., Keppel-Aleks, G., Toon, G., Wunch, D., Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R., Messerschmidt, J., Notholt, J., & Warneke, T. (2011). Toward accurate CO2 and CH4 observations from GOSAT. Geophysical Research Letters, 38, L14812.  .
  5. Ciais, P., Crisp, D., Denier van der Gon, H., Engelen, R., Janssens-Maenhout, G., Heimann, M., Rayner, P., & Scholze, M. (2015). Towards a European operational observing system to monitor fossil CO2 emissions. Brussels: European Commission. . Accessed 16 Aug 2019.
  6. Energy Information Agency (EIA). (n.d.). Frequently asked questions: How much carbon dioxide is produced when different fuels are burned? . Accessed 21 June 2019.
  7. Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J.-M., & Morgan, V. I. (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research Atmospheres, 101(D2), 4115–4128.  .
  8. Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., & Millero, F. J. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. U.S. Dept. of Commerce/NOAA/OAR/PMEL/Publications. . Accessed 14 Aug 2019.
  9. Gallagher, R. M., & Ingram, P. (2000). Complete chemistry. Oxford, UK: Oxford University Press.
  10. Gibbs, M. J., Soyka, P., & Conneely, D. (n.d.). CO2 emissions from cement production good practice guidance and uncertainty management in national greenhouse gas inventories. . Accessed 13 Aug 2019.
  11. Gómez, D. R., Watterson, J. D., Americano, B. B., Chia, H., Marland, G., Matsika, M., Namayanga, L. N., Osman-Elasha, B., Kalenga Saka, J. D., & Treanton, K. (IEA), Contributing Author Quadrelli, R. (IEA). (2006). Stationary combustion. In UNFCCC 2006 IPCC guidelines for national greenhouse gas inventories, Vol. 2 energy. . Accessed 16 Aug 2019.
  12. Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., & Russel, G. (1981). Climate impact of increasing atmospheric carbon dioxide. Science, 213, 957–966.
  13. Hu, G., Nicholas, N. J., Smith, K. H., Mumford, K. A., Kentish, S. E., & Stevens, G. W. (2016). Carbon dioxide absorption into promoted potassium carbonate solutions: A review. International Journal of Greenhouse Gas Control, 53, 28–40.  .
  14. Intergovernmental Panel on Climate Change (IPCC). (1990). In J. T. Houghton, G. T. Jenkins, & J. J. Ephraims (Eds.). Climate change the IPCC scientific assessment. New York: Cambridge University Press.
  15. International Energy Agency (IEA). (2016). CO2 emissions from fuel combustion highlights. . Accessed 21 June 2019.
  16. Jacobson, M. Z. (2005). Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and oceanequilibrium chemistry. Journal of Geophysical Research, 110.  .
  17. Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Olivier, J. G. J., Peters, J. A. H. W., & Schure, K. M. (2017). Fossil CO2 and GHG emissions of all world countries. JRC107877, EUR 28766 EN (p. 14). Luxembourg: Publications Office of the European Union, Luxembourg. p 14,  . ISBN 978-92-79-73207-2.
  18. Karagiannopoulos, L. (2018). Swedish steel plant to run on hydrogen. Reuters. . Accessed 13 Aug 2019.
  19. Krey, V., Masera, O., Blanford, G., Bruckner, T., Cooke, R., Fisher-Vanden, K., Haberl, H., Hertwich, E., Kriegler, E., Mueller, D., Paltsev, S., Price, L., Schlomer, S., Urge-Vorsatz, D., van Vuuren, D., & Zwickel, T. (2014). Annex II: Metrics & methodology. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, S. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlomer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK/New York: Cambridge University Press.
  20. Kudeyarov, V. N. (2018). Soil respiration and biogenic carbon dioxide sink in the territory of Russia: An analytical review. Eurasian Soil Science, 6, 599–612.  .
  21. Kundak, M., Lazij, L., & Črnko, J. (2009). CO2 emissions in the steel industry. Meta, 3, 193–197.
  22. Lindsey, R., & Dahlman, L. A. (2018). Climate change: Global temperature. National Oceanic and Atmospheric Administration (NOAA). . Accessed 26 Aug 2019.
  23. Mortimer, C. E., & Müller, U. (2010). Chemie–Das Basiswissen der Chemie (p. 466). Stuttgart: Thieme Verlag.
  24. Nakićenović, N., Victor, N., & Morita, T. (1998). Emissions scenarios database and review of scenarios. Mitigation and Adaptation Strategies for Global Change, 3, 95–120.
  25. National Oceanic and Atmospheric Administration (NOAA). (n.d.). Trends in atmospheric carbon dioxide. . Accessed 20 June 2019.
  26. Post, W. M., Peng, T.-H., Emanuel, W. R., King, A. W., Dale, V. H., & DeAngelis, D. L. (1990). The global carbon cycle. American Scientist, 78(4), 310–326. . Accessed 16 Aug 2019.
  27. Powlson, D., Smith, P., & Greenland, D. (2004). Soils as carbon sinks foreword. Soil Use and Management, 20, 210–211.  .
  28. Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C., & Watson, A. (2005). Ocean acidification due to increasing atmospheric carbon dioxide. London: The Royal Society. 68 p. ISBN 0-85403-617-2. . Accessed 22 June 2019.
  29. Schlesinger, W. H., & Andrews, J. A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7–20. http://orgillpark.com/article/10.1023/A:1006247623877. Accessed 15 Aug 2019.
  30. Sundquist, E. T. (1985). Geological perspectives on carbon dioxide and the carbon cycle. In E. T. Sundquist & W. S. Broecker (Eds.), The carbon cycle and atmospheric CO2: Natural variations Archean to present (Vol. 32).  . ISBN 9780875900605
  31. United Nations (UN). (2015). The Paris agreement. . Accessed 22 June 2019.
  32. United Nations Framework Convention on Climate Change (UNFCCC). (2015). Adoption of the Paris agreement – Proposal by the President – Draft decision -/CP.21. . Accessed 15 Aug 2019.
  33. United Nations Framework Convention on Climate Change (UNFCCC). (n.d.-a). National GHG inventories: Scope and general principles, and 2006 IPCC guidelines and relationship to earlier IPCC guidelines. . Accessed 12 Aug 2019.
  34. United Nations Framework Convention on Climate Change (UNFCCC). (n.d.-b). Glossary of climate change acronyms and terms. . Accessed 13 Aug 2019.
  35. University of New Hampshire. (n.d.). An introduction to the global carbon cycle. . Accessed 22 June 2019.
  36. Vaidyula, M., & Hood C. (2018). Accounting for baseline targets in NDCs: Issues and options for guidance. Climate change expert group paper no. 2018 (2)JT03430722©OECD/IEA, Paris, p. 10. . Accessed 15 Aug 2019.
  37. Wiley, D. E., Hoa, M. T., & Bustamante, A. (2011). Assessment of opportunities for CO2 capture at iron and steel mills: An Australian perspective. Energy Procedia, 4, 2654–2661.  .
  38. World Steel Association. (2019). World steel in figures 2019. Brussels. . Accessed 13 Aug 2019.
  39. World Steel Association. (n.d.). Steel’s contribution to a low carbon future. . Accessed 13 Aug 2019.
  40. Worrel, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26, 303–329.  .

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Communication and EnvironmentRhine-Waal University of Applied ScienceKamp-LintfortGermany

Section editors and affiliations

  • Shuchi Pahuja
    • 1
  1. 1.PGDAV CollegeUniversity of DelhiDelhiIndia